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Abstract
By matching boundary layer hydrodynamics with slippage to the force-free flow at larger
distances, we obtain the thermophoretic mobility of charged particles as a function of the
Navier slip length b. A moderate value of b augments Ruckenstein’s result by a term 2b/λ,
where λ is the Debye length. If b exceeds the particle size a, the enhancement coefficient a/λ is
independent of b but proportional to the particle size. Similar effects occur for transport driven
by a salinity gradient or by an electric field.

1. Introduction

In recent years the thermally driven motion of charged colloids
has attracted much attention, and a variety of surprising
phenomena have been observed [1, 2]. The Soret effect of
a micellar solution was shown to vary with the surfactant
concentration [3], and unexpected dependences on temperature
and electrolyte composition were reported for suspensions of
nanoparticles and macromolecular solutions [4–13]. A thermal
gradient has been used as a trap for DNA in a microchannel
with ambient flow [14].

Transport of charged colloids arises from a generalized
external force acting on the electric double layer at a particle–
fluid interface. The thermophoretic mobility is defined through
the drift velocity of the solute induced by a temperature
gradient in the solvent fluid:

u = −DT∇T . (1)

There are two different routes to calculating the transport
coefficient DT: the first one relies on low Reynolds number
hydrodynamics and the thermal force density on the fluid in
the boundary layer [15–21], whereas the second one expresses
the velocity u through the particle mobility and a force that is
given by the gradient of the double-layer energy [22–24].

Most parameters of a charged colloid depend on
temperature, such as the solute surface potential and the solvent
permittivity, viscosity and salinity. Thus, in most cases, it is not
obvious to single out the physical mechanism underlying the
observed dependences. For example, the transport coefficient
DT changes sign as a function of temperature and electrolyte
composition; increasing temperatures and high pH values favor
an inverse Soret effect DT < 0. It was realized only recently

that the thermoelectric field of the electrolyte solution plays a
major role in thermophoresis and often determines the sign and
magnitude of DT [6, 20].

The size dependence of DT has been much debated in the
last few years. Experiments on polystyrene beads in aqueous
solution reported a linear variation DT ∝ a with the particle
radius over almost two orders of magnitude [7]; on the other
hand, a constant DT was found for droplets in microemulsions,
and polystyrene beads [9, 11, 12].

From low Reynolds number hydrodynamics with no-slip
boundary condition at the particle–fluid interface, it is well
known that any transport coefficient is constant with respect
to the particle size, as long as the latter is larger than the
Debye length λ [25]. At moderate electrolyte strength, λ takes
typical values of a few nanometers, thus satisfying λ � a.
Accordingly, Ruckenstein obtained a constant DT [15]; this
result was confirmed by several authors [16–20]. As a possible
explanation for the experimental findings of [7], we noted in
a previous paper that hydrodynamic slippage at the particle
surface would give rise to a linear dependence of DT on the
particle size [21].

In the present work, we derive the thermophoretic mobility
as a function of the particle size a, the Debye length λ

and the slip length b. We discuss the dependence on these
different length scales and, in particular, recover the above-
mentioned limiting cases of constant DT and DT ∝ a. In
section 2 we obtain the general expression for the velocity
change through the boundary layer. In section 3 we show how
a finite slip length modifies thermophoresis due to temperature
and permittivity gradients; section 4 discusses similar effects
in a non-uniform electrolyte. We conclude with a discussion of
the main results.
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Figure 1. Schematic view of the fluid velocity field in the boundary
layer close to a particle of radius a. The external field acting on the
electric double layer accelerates the charged fluid with respect to the
solid. A finite surface velocity v0 arises from hydrodynamic slip in a
molecular layer (thick gray line); the slip length b is defined as the
distance where the linear velocity profile would vanish. At a distance
B, well beyond the electric double layer, the fluid attains the
boundary velocity vB.

(This figure is in colour only in the electronic version)

2. Boundary layer hydrodynamics

The boundary conditions at a solid–fluid interface have been
debated since the early days of fluid mechanics; Navier
proposed that a sheared fluid could slip along the surface,
with the velocity jump being proportional to the applied
shear rate. At a macroscopic scale, the fluid sticks to
the solid surface, suggesting continuity of the velocity field.
On the scale of microns or even nanometers, however,
various measurements provide evidence for the occurrence of
hydrodynamic slippage [26, 27]. On a molecular level, slip has
been explained in terms of the weak adherence of the solvent
to the solid surface. Simulations of the molecular dynamics
at a charged interface related the slip length to van der Waals
force parameters of the non-wetting fluid and to ion-specific
interactions [28]. These simulations show that continuum
hydrodynamics provide a good description of the fluid motion
even on the scale of nanometers, and that slip occurring in a few
molecular layers may significantly accelerate externally driven
transport, such as the flow in a microchannel.

In a continuum picture, the shear stress �0 and the
resulting slip velocity v0 are related through Navier’s boundary
condition:

ηv0 = b�0, (2)

where η is the fluid viscosity and b a material-specific constant
that has the dimension of a length. Figure 1 illustrates the
physical meaning of the slip length. This parameter accounts
for the reduced molecular viscosity at the interface. Various
experiments confirm the linear stress–velocity relation, but
others indicate a nonlinear behavior, i.e. a slip length b that
depends on the shear rate [26, 27].

A particle of radius a exerts on the surrounding fluid the
effective force density fx , including the excess hydrostatic
pressure [19, 20], which is finite only close to the surface
and vanishes at distances of the order of B . The normal
component of the fluid velocity within the boundary layer
is zero and its parallel component satisfies Stokes’ equation,

η∂2
z vx + fx = 0, with constant hydrostatic pressure. It turns

out to be convenient to consider the fluid motion in the frame
attached to the particle. The integral of η∂2

z vx + fx = 0 gives
the shear stress �xz = η∂zvx . Its values at the surface �0 and
at the outer side of the boundary layer are related by

�B = �0 −
∫ B

0
dz fx ≡ �0 −��. (3)

Integrating once more gives the parallel component of the fluid
velocity vx(z). With the finite value at the particle surface
v0 = vx(0) we have well beyond the charged layer

vB = v0 + 1

η

∫ B

0
dz z fx ≡ v0 +�v. (4)

The boundary velocity vB is the sum of two contributions of
different physical origins. The intrinsic slip velocity v0 arises
if the fluid molecules do not fully adhere to the solid. The
velocity change through the boundary layer �v, sometimes
referred to as apparent slip [25], is due to the forces exerted
by the surface on the fluid in the boundary layer.

The above equations (2)–(4) are closed by matching �B

and vB to the fluid flow beyond the boundary layer. In this
range, the velocity field is a solution of the force-free Stokes
equation η∇2v = 0 in three dimensions [30, 31]. For a uniform
particle surface, the boundary velocity depends on the polar
angle as

vB = v̄B sin θ.

The normal and tangential components of the fluid flow beyond
the boundary layer (r � ã ≡ a + B) vary as vr ∝ [1− (ã/r)3]
and

vt = vB

(
2

3
+ 1

3

ã3

r 3

)
.

Since the normal velocity vr vanishes at r = ã, the off-
diagonal stress in spherical coordinates is [31]

�rt = η

(
dvt

dr
− vt

r

)
.

With ã � a, we find the stress at the outer side of the boundary
layer:

�B = −2ηvB

a
. (5)

For an inhomogeneous particle surface [32], the tangential
velocity takes a more general form vt = ∑

n cn(θ)r−n and
modifies the numerical prefactor in �B accordingly.

We briefly discuss the role of curvature in the matching
condition (5). The change �� through the boundary layer has
been calculated with �xz = η∂zvx , i.e. the shear stress has
been taken as the normal derivative of the tangential velocity.
On the other hand, equation (5) has been obtained from the
above expression �rt in spherical coordinates that comprises,
besides the normal derivative ∂rvt , the term −vt/r accounting
for the finite curvature of the interface. Indeed, outside the
boundary layer, the normal derivative ∂rvt of the force-free
flow ∂rvt and the curvature term −vt/r are of the same order
of magnitude; thus, both have to be retained. As shown in [33]
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for Navier’s slip condition (2), the curvature contribution to
the shear stress can be written alternatively in terms of the
normal derivative �xz = η∂zvx with an effective slip length
1/beff = 1/b + 1/a.

Equations (2)–(5) determine the boundary velocity vB as a
function of the slip length:

vB = �v + b��/η

1 + 2b/a
. (6)

For Stokes’ boundary conditions with zero slip length one
has vB = �v, whereas the opposite limit b → ∞ leads to
vB = 1

2 a��/η. In some aspects hydrodynamic slippage at a
solid–fluid interface is similar to the flow on a gas bubble in
a viscous liquid [25, 34], which is described by Hadamard–
Rybczynski boundary conditions. In view of (2) the limit of
zero shear stress at the interface, �0 = 0, corresponds to
b → ∞ [30].

So far we have considered the reference frame where the
particle is immobile, that is why vr and vt are finite at r → ∞.
Transformation to the laboratory frame gives the velocity of the
moving particle, u = −〈evvB〉; the orientational average along
the particle surface 〈· · ·〉 results in [25]

u = − 2
3 v̄B. (7)

Equations (6) and (7) apply to any force density exerted on
the fluid in the boundary layer. In the remainder of this paper
we discuss in detail the case of thermophoresis, and then
treat a non-uniform electrolyte with a salinity gradient and a
spontaneous electric field.

3. Thermophoresis

We discuss transport driven by a temperature gradient in an
otherwise uniform electrolyte [15]. In order not to encumber
the equations, we resort to the Debye–Hückel approximation.
The charged particle exerts on a unit volume of the surrounding
fluid the force density [19, 20]

f = εψ2

2λ2
(1 + α + τ )

∇T

T
,

where ψ = ψ0e−z/λ is the electric potential in the boundary
layer and ψ0 is the value at the surface. The logarithmic
derivative τ = −d ln ε/d ln T accounts for the temperature
dependence of the permittivity ε(T ); in water it varies from
τ = 1.25 at 0 ◦C to τ = 1.5 at 50 ◦C. The parameter α
describes the spatial variation of the salinity [18, 20]:

∇n0

n0
= −α0

∇T

T
.

The reduced Soret coefficient α of the electrolyte solution takes
values α = 0.8 for NaCl and α = 3.4 for NaOH.

Integrating equations (3) and (4) we find with Tx = dT/dx
the changes of velocity and shear stress:

�v = εψ2
0

8η
(1+α+τ )Tx

T
, �� = εψ2

0

4
(1+α+τ )Tx

T
.

Insertion in the general relation (6) gives the boundary velocity

vB = εψ2
0

8η
(1 + α + τ )

1 + 2b/λ

1 + 2b/a

Tx

T
.

Identifying u = − 2
3 v̄B and u = −DTTx we obtain the

thermophoretic mobility

DT = εψ2
0

12ηT
(1 + α + τ )

1 + 2b/λ

1 + 2b/a
, (8)

which constitutes a main result of the present paper.
We discuss limiting cases with respect to the lengths

a, b, λ. For zero slip b = 0 and using the surface potential
ψ0 = λσ/ε, we have

D(0)
T = σ 2λ2

12ηεT
(1 + α + τ )

and thus recover the variation with the square of the Debye
length obtained in [15, 17, 19]. In the opposite case of large
slip length a � b, equation (8) confirms the relation DT =
(a/λ)D(0)

T obtained previously in [2, 21]. In the intermediate
case λ � b � a, we find a linear law DT ∝ λ, with an
enhancement factor DT/D(0)

T = 2b/λ that is twice that of the
electrophoretic mobility μ/μ0 = b/λ [29]. The additional
factor of 2 arises since the thermal force is quadratic in the
surface potential ψ0, whereas electrophoresis is linear in ψ0.

4. Thermoelectricity

Recently it has become clear that the Soret effect of
charged colloids is, to a large extent, determined by the
thermoelectric effect of the electrolyte solution [6, 20], that
is, the macroscopic field induced by thermal diffusion of the
mobile ions:

E∞ = δα
kB∇T

e
,

where e is the elementary charge and δα the reduced Seebeck
coefficient. Typical values are δα = 0.6 for NaCl and δα =
−2.7 for NaOH [20]. This electric field drives the colloidal
particles to the cold or to the warm, depending on the sign of δα
and of the surface charge σ . Note that this effect differs from
that studied in [36], with an electric field Eind ∝ (D+ − D−)
proportional to the difference of diffusion coefficients of co-
ions and counterions.

The thermoelectric effect modifies the thermophoretic
mobility according to [20]

DT − δαb
eψ0

4ηπ�BT
= DT − δαb

σλkB

e
, (9)

where the reduced Seebeck coefficient δαb accounts for a finite
slip length. Equation (8) shows how the first term depends on
the slip length b. Here we derive the corresponding relation for
δαb.

The external electric field E∞ exerts on the charged fluid
in the boundary layer the force

f = ρE∞, (10)
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where ρ = −2e sinh(eψ/kBT ) is the charge density in the
electric double layer. The permittivity of water being much
larger than that of most materials, the electric field hardly
penetrates into the particle; close to the particle the vector ES

is parallel to the surface, and its magnitude ES = 3
2 E∞ sin θ

is enhanced by a factor 3ε/(2ε + εP) ≈ 3
2 with respect to the

value at infinity E∞. For a homogeneous surface the integrals
in (3) and (4) are readily related to the electrostatic properties
of the charged surface. From direct integration or comparison
with known results for electrophoresis [35], we obtain the
stress and velocity changes through the boundary layer in terms
of the surface charge density σ and the surface potential ψ0:

�� = −σ ES, �v = −εψ0

η
ES . (11)

Note that the ratio of the velocity change �v and ES is
identical to the Helmholtz–Smoluchowski mobility μ0 =
εψ0/η [35]; this does not come as a surprise, since the
thermoelectric effect induces a macroscopic electric field.

Inserting these quantities in (6) we find the boundary
velocity vB and the modification of the Seebeck coefficient by
the slip length:

δαb = δα
1 + b/λ

1 + 2b/a
. (12)

The overall behavior is similar to (8), yet with a linear
correction term b/λ that is smaller by a factor of 2. This
difference is readily traced back to the fact that thermophoresis
is quadratic in the surface potential, whereas the electric field
E∞ couples linearly to ψ0.

5. Discussion

According to equations (8) and (12), the Soret and
thermoelectric effects of charged colloids show a similar
dependence on a finite slip length b. For small values of b
we find an enhancement factor proportional to the ratio of slip
and Debye lengths b/λ. If b is comparable to the particle size,
this linear law saturates at a constant value ∼a/λ.

A recent experimental study [7] reported the ther-
mophoretic mobility DT of charged polystyrene beads to de-
pend on the particle size. The data show a linear variation with
both particle radius and Debye length, DT ∝ aλ, in the range
2 nm < λ < 13 nm and 10 nm < a < 550 nm. These observed
dependences are well accounted for by equation (8) with slip
boundary conditions, λ � a � b, but differ essentially from
the no-slip result D(0)

T ∝ λ2. Yet note that a fit of these data
with equation (8) would require a slip length of hundreds of
nanometers. Such large values are hardly realistic in view of
available data [27]. Moreover, a large slip length implies high
surface tension, i.e. low solubility of the particles. Thus we
feel that at present there is no satisfactory explanation for the
data of [7].

As a more promising system for the observation of
slip-enhanced thermophoresis, one could think of thermally
driven flow through a pore or in a microchannel. This
situation is accounted for by our results when putting in the
above formulae a → ∞. Then the enhancement factors
in equations (8) and (12) are (1 + 2b/λ) and (1 + b/λ),
respectively. A significant enhancement is expected it the slip
length b exceeds the Debye length λ, which is typically of the
order of 1 nm.
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